MOOSE Seminar Keynote

“State of the practice in European embedded software engineering”

Rini van Solingen

Moose Project Manager
Principal Consultant in SW Management, LogicaCMG
Professor in Quality Management & Engineering, Drenthe University

Rini.van.Solingen@LogicaCMG.com

http://www.mooseproject.org/
Agenda

- Introduction
- MOOSE web-repository
- Analysis of state-of-the-practice
- Strategies for increasing “deployability”
- Conclusions

Introduction
Embedded SW Market

- Product is sold, not software
- Dominant hardware restrictions (memory, timing)
- Strongly based on previous products
- Increasing amount of software
- Application of software engineering technology

Embedded Software Market

Number of embedded systems per household

http://www.mooseproject.org/
Challenges embedded sw market

- Faster development
- More functionality with increasing complexity
- Increasing quality and performance demands
- Financial pressure on product cost, mostly hardware only

- Increasing demands on business drivers
- Technological innovation as a solution
 - Hardware technology
 - Software engineering technology
 - SE technology: methods, techniques, tools, and processes

Innovation = New Technology + Usage

- Innovation includes usage
 - Technology development without usage is NOT innovation
 - Many research initiatives focus on technology development only
 - Technology adoption by industry often lasts long
- Two types of innovation
 - Initial innovation
 - First time development and industrial application
 - Evolutionary innovation
 - Continuous improvement from application experiences
- Moose facilitation through experience exchange
 - Sharing what worked and did not work in which situation and why
MOOSE web-repository

http://www.mooseproject.org/
MOOSE web-repository

- Project centred storage and exchange of experiences
- Project characterisation
 - Effort, persons, lead-time, business driver, etc.
- Product characterisation
 - Software, Hardware, Real-time criticality, Market
- Technology characterisation
 - SE technology used
 - Satisfaction with the technology for that project (scale)
 - Short textual reason for this satisfaction rating
- Project evaluation report
 - Optional attachment with detailed findings and experiences

Content of the web-repository

- Currently: 89 projects included (analysis based on 78)
- Projects originate from voluntary submission
 - Registered users can enter project experiences
 - Evaluation board evaluates submission on completeness and reliability
 - Registered users can contact project owners
 - Unregistered users can only browse anonymous projects and technologies
- Analysis of the web-repository
 - Provides insight in state-of-the-practice
 - First idea on trends
 - Limited validity of findings and conclusions

http://www.mooseproject.org/
Analysis of the web-repository

What is the state-of-the-practice?

Project characterisation (1)
[Business driver and Spread]

- **Main business driver**
 - 80% of the projects are driven by schedule or functionality demands
 - 70% of the projects are undertaken on 1 site with max. 2 teams

- Number of sites
- Number of teams

http://www.mooseproject.org/
Project characterisation (2)

[Lead-time and Effort]

- **Lead-time (months):**
 - <3
 - 4-6
 - 7-12
 - 13-24
 - >24
 - 60% of the projects have a duration of <1 year
 - 80% of the projects have a duration of <2 years

- **Effort (person years):**
 - <1
 - 1-5
 - 6-10
 - 10-50
 - >50
 - 50% of the projects cost less than 5 person years of effort
 - 5% more than 50 py

Product characterisation (1)

[Type and Real-time criticality]

- **Product Type:**
 - Professional
 - Consumer
 - OEM
 - 50% have soft or not

- **Real-time criticality:**
 - Hard real-time
 - Soft real-time
 - Not real-time
 - 50% of the products have hard real-time constraints
 - 50% have soft or not
Product characterisation (2)
[SW Size and HW Size]

- 60% of the products have more than 100,000 lines of software code

- 35% of the products have memory boundaries below 1 Mbyte
 - 30% have over 16 Mbyte

Product characterisation (3)
[SW and HW]

- 30% of the products have MsWindows operating system

- 30% of the products are Intel/PC-based
Technology Characterisation

What is the state-of-the-practice in SE technology application?

Which Requirements Engineering Methods are used?

- None used
- Proprietary method
- RequisitePro
- Problem Frame approach
- Interviews
- Use cases
- Other

55% of the products are developed without use of a RE method.

http://www.mooseproject.org/
Which Requirements Engineering Tools are used?

- MsWord: 20%
- No tool used: 25%
- RequisitePro: 5%
- MsExcel: 10%
- Other: 5%

50% of the projects use MsWord/Excel for RE
20% use dedicated RE tools

Which Design methods are used?

- None used: 30%
- UML: 25%
- Proprietary method: 15%
- SA/SD: 10%
- Object Oriented Design: 5%
- UML-RT: 5%
- Other: 5%

30% of the products is designed without use of a method
25% by use of UML
Which Design tools are used?

- No tool used: 25%
- MsVisio/Visual studio: 10%
- Rational Rose: 15%
- MsWord: 5%
- Rational Rose RT: 5%
- Prosa: 5%
- Other: 5%

25% of the products is designed without use of a tool
20% by a generic drawing tool

Which coding languages are used?

- C: 30%
- C++: 25%
- Assembler: 20%
- Java: 15%
- Other: 5%

55% of the products is made in C/C++
20% in Assembler
15% in Java
Which Test Tools are used?

Test Tooling

- No tool used/manual testing
- Proprietary
- QAC/C++
- Hitex Debugger
- PurifyPlus
- GNU tooling
- TLCS Debugger
- Hardware test benches
- ConTest/TestFrame
- Other

30% of the products is manually tested.

Which Configuration Management tools are used?

Configuration Management Tooling

- CMSynergy
- ClearCase
- PVCS
- No tool used/manual CM
- VisualSourceSafe
- CVS
- Proprietary tool
- Other

90% of the products is developed using a CM tool.
Which PR/CR handling tools are used?

- No tool used/manual: 40% of the projects use a PR/CR tool
- Other: 20% have no tool
- MsExcel, ClearDDTS, Lotus Notes, Proprietary tools: 20% use a generic tool

Which Management processes are installed

- ISO900x: 35% of the projects use CMM for process management
- CMM level 2
- Proprietary
- CMM level 3
- None used
- Other
Which Engineering process is used?

![Engineering process diagram](image)

- **Incremental**: 50% of the products is developed by an incremental engineering process.
- **Waterfall**
- **Proprietary**
- **Time-boxing**
- **Parallel development**
- **No engineering process**
- **Other**

Overview over technologies and SE

<table>
<thead>
<tr>
<th>SE Technology</th>
<th>Value</th>
<th>Most Used</th>
<th>Most Satisfied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management process</td>
<td>★★★★☆</td>
<td>ISO900x</td>
<td>CMM level 2</td>
</tr>
<tr>
<td>Engineering process</td>
<td>★★★★☆</td>
<td>Incremental</td>
<td>Incremental</td>
</tr>
<tr>
<td>RE method</td>
<td>★★★★☆</td>
<td>No method</td>
<td>Interviews / Use-cases</td>
</tr>
<tr>
<td>Design method</td>
<td>★★★★☆</td>
<td>No method</td>
<td>UML-RT</td>
</tr>
<tr>
<td>Programming language</td>
<td>★★★★☆</td>
<td>C/C++</td>
<td>C/C++</td>
</tr>
<tr>
<td>RE tooling</td>
<td>★★★★☆</td>
<td>MsWord</td>
<td>RequisitePro</td>
</tr>
<tr>
<td>Design tooling</td>
<td>★★★★☆</td>
<td>No tool</td>
<td>Rose RT</td>
</tr>
<tr>
<td>Test tooling</td>
<td>★★★★☆</td>
<td>No tool</td>
<td>HW tools / ConTest</td>
</tr>
<tr>
<td>CM tooling</td>
<td>★★★★☆</td>
<td>CMSynergy</td>
<td>CMSynergy</td>
</tr>
<tr>
<td>PR/CR tooling</td>
<td>★★★★☆</td>
<td>No tool</td>
<td>ChangeSynergy</td>
</tr>
</tbody>
</table>
Summary state-of-the-practice

- **Product characterisation**
 - Most products contain more than 100,000 lines of software code
 - 70% of products have memory boundaries above 1 Mbyte
 - Half of the products have limited or no real-time constraints
 - 30% of the products have MsWindows OS and are Intel/PC-based

- **Project characterisation**
 - Most projects are driven by schedule or functionality, have a duration of <2 years, and are undertaken on 1 geographic location
 - Half of the projects cost less than 5 person years of effort

- **Technology characterisation**
 - Half of the products are built without a RE method using MsWord/Excel
 - 30% of the products is designed without a method, 25% by use of UML.
 - Half of the products are programmed in C/C++
 - Almost all products are developed using a configuration management tool

Opportunities for innovation

- Real-time specific tools score well, but are hardly used. Maturisation of RT specific tools might be interesting
- No method or tool support common for Requirements Engineering. RE seems most promising improvement area for embedded systems
- CMM most actual used and appreciated, so adoption of CMM-I seems opportunity
- Introduction of embedded test tooling, integrated with HW test tooling potential improvement area
- Integration of technologies continues to be large opportunity, however, highly context dependent. Default integrated tool set based on most used technologies could be interesting for industry
Reasons for not using innovative technologies

- Legacy in technologies is leading
- Time-pressure in project does not leave time for new things
- Immaturity of new technologies and complexity (learning investment) is too high
- Risks for new technology introduction are too high
- Benefits of technologies are not clear upfront, guarantees are not given
- Experiences or measurements are hardly available
- Sentiment
- Deployment is major challenge in industry

Increasing “Deployability”

- Maturity assessment of technologies
- Impact specification of technologies
- Interfacing for technology chains
- Measurement and exchange of experiences
- Variations of technologies to application domains
- Increased collaboration between technology providers and users
- Paradigm shift in SW engineering research:
 - from revolution to evolution
 - from introduction to maturisation
 - from development to evaluation
Conclusions

State-of-the-practice

- Large gap between available and industry used technologies
- Industry acts conservative towards SE technologies
 - Often no methods used
 - Mainly generic tools used
 - Proven technology is used at low risk
 - Pragmatic approaches
- Industry is often not able to make rigorous changes
- So: **Minimal changes but with maximal results**
 - Not a revolution strategy towards innovation
 - Evolution strategy towards innovation
 - However, this is not supported by most technologies

http://www.mooseproject.org/
MOOSE web-repository

- Sharing experiences among practitioners
- Finding projects that are similar to own situation
- Finding proposals for new/innovative technologies
- Getting in touch with other projects directly
- Support for minimal change maximum effect strategy
- Web-repository in public domain and maintained on open-source concepts
- Feasibility of the web-repository depends on continuous addition of new project experiences
- Joint benefit from joint effort

http://www.mooseproject.org/

Rini.van.Solingen@LogicaCMG.com

http://www.mooseproject.org/
Clustering Web-repository projects