
FOCUS: SECTION TITLE

cover image here

0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0  ©  2 0 1 4  I E E E 	 NOVEMBER/DECEMBER 2014   |  IEEE SOFTWARE � 47

FOCUS: VIRTUAL TEAMS

Collaboration 
Spaces for 
Virtual Software 
Teams
Kevin Dullemond, Ben van Gameren, and Rini van Solingen,  
Delft University of Technology 

// Software engineering is a field in which distributed 

development through virtual teams is a fact of life. 

Thus, environments for supporting virtual software 

teams should place collaboration at the forefront. A set 

of eight core requirements for support environments 

derived from, and validated in, industrial settings 

address how to provide virtual software teams with a 

sufficient level of awareness for their work activities. //

THE DAYS of software engineer-
ing taking place in a single office 
building are long gone; in this dy-
namic field, virtual software teams 
are a fact of life. However, bring-
ing distance into software engineer-
ing has had an enormous impact on 
teams and the work itself: distance 
matters.1,2 

Nearly everyone with experience 
in virtual software teams has en-
countered some challenges. If soft-
ware engineering were a purely tech-
nical, one-man job, we could cope 
with these challenges much more 
easily. However, this is a strongly 
collaborative profession. Social activ-
ities represent a considerable portion 

of the average day of software engi-
neers, who mainly perform four sorts 
of daily activities:3

•	 coding,
•	 organizing workspaces and 

processes,
•	 representing and communicating 

design decisions and ideas, and
•	 communicating and negotiating 

with various stakeholders.

Note that three of these four are col-
laborative tasks and not at all tech-
nical! Dewayne Perry and his col-
leagues observed that developers 
spend more than half their time on 
activities that include some form of 
interaction with others.4 Collabora-
tion is downright essential to soft-
ware teams,5 regardless of whether 
those teams are virtual or not, 
but distance makes collaboration 
more difficult, magnifying the chal-
lenges that virtual software teams 
encounter.

Unsurprisingly, virtual software 
teams have started to develop tools 
to address these challenges. Today, 
many environments exist to sup-
port virtual software teams, most 
of which include some support for 
collaboration. However, these tools 
have different origins, with differ-
ent initial goals in mind—compare, 
for example, integrated development 
environments such as Eclipse and 
Microsoft Visual Studio to project-
hosting sites such as SourceForge 
and Google Code and centralized 
build systems such as Apache Con-
tinuum and CruiseControl. All of 
these tools have been extended with 
collaborative capabilities; Filippo 
Lanubile and his colleagues discuss 
and compare the collaborative sup-
port of nine such environments.6 But 
a closer examination reveals that the 

s6sol.indd   47 10/3/14   2:09 PM



48	 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: VIRTUAL TEAMS

so-called “integration” of collabora-
tive functionalities is limited mostly 
to making the functionality avail-
able in each specific platform sepa-
rately. Providing functionality such 
as a mailing list, a message board, or 
instant messaging is one thing, but 
integrating these features into a pro-
cess is quite another.

Because collaboration is so es-
sential to virtual software teams, 
we claim that their support environ-
ments should place collaboration at 
the forefront to be successful. Com-
panies such as Atlassian are start-
ing to do this, but we think mobile 
phone support and related features 
are only initial steps, and much more 
is to be gained.

Refocusing Support 
Environments
In the computer-supported collabora-
tive work (CSCW) community, much 
research is focused on how to effec-
tively support virtual teamwork.7–9 
One of the most striking conclusions 
of these studies is that several sepa-
rate tools support virtual software 
teams, yet little has been done to in-
tegrate them. Moreover, most of the 
surveyed tools are related to code-
specific tasks.10 In other words, ex-
isting support environments for vir-
tual software teams focus mainly 
on individual programming tasks; 
any collaborative functionalities are 
available mostly in isolated (spe-
cial-purpose) environments, such as 
a code editor that supports a chat 

function or a separate debugger that 
shows which colleagues are using 
that tool at that point in time.

Distance can’t be changed through 
tools, but the perception of it can be 
greatly reduced.11 For instance, vir-
tual teams that have a Google Hang-
out open all day might be physically 
distributed, but they won’t perceive 

a large distance within the team. In 
our research (see the sidebar for an 
overview), we worked on increasing 
awareness among virtual software 
teams through tools. As Paul Dour-
ish and Victoria Belotti defined it, 
“awareness is an understanding of 
the activities of others, which pro-
vides a context for your own activ-
ity.”12 Ideally, tools that support vir-
tual teams need to bring engineers 
to the same (or a higher) degree of 
awareness as when they’re collo-
cated. When this happens, teams can 
truly collaborate on a global field, 
perhaps even making the term vir-
tual superfluous.

Requirements for 
Virtual Team Support 
Environments
On one hand, collaboration should 
be a first-class citizen, taking a 
prominent role at the core of the sup-
port environment, but on the other, 
exchanging awareness information 
relatively passively and unobtru-
sively is essential for seamless col-
laboration. What we need is a single 
platform that both supports all the 
awareness needs of virtual software 

teams and integrates awareness in-
formation from different informa-
tion sources.

But how can we make such an 
environment a reality? Over the 
past four years, we worked with 
real-life virtual software teams to 
identify their needs and validate 
possible solutions. We condensed 
our results into a set of eight core 
requirements that address how to 
provide virtual software teams with 
a higher level of awareness, thereby 
helping them function as a team 
more effectively.

Requirement 1: Enable Unobtrusive 
Awareness Information Exchange
In a traditional collocated setting, 
awareness is achieved without much 
effort, but in a distributed one, engi-
neers must manually analyze, filter, 
and combine available information.13 

For example, when you’re work-
ing in an office with a software 
team, it’s easy to know who else is 
present, what they’re doing, and to 
what extent you can interrupt some-
one and ask them for help. Tools 
to support virtual software teams 
should enable a comparable level of 
awareness, a goal that’s feasible be-
cause a system can “know” what 
task you’re working on, who previ-
ously edited your file, and whether 
colleagues can be interrupted. Your 
system could ideally provide you 
with contextualized information 
without you actively searching for 
it or disturbing you. Of course, such 
a system would require highly intel-
ligent filtering and a basic under-
standing of what engineers do.

Requirement 2: Make Basic  
Work-Related Data Available
Obviously, support environments 
need to make necessary information 
available, but the biggest challenge 

To prevent workers from  
becoming overloaded, it’s important  

to filter the data they get. 

s6sol.indd   48 10/3/14   2:09 PM



	 NOVEMBER/DECEMBER 2014  |  IEEE SOFTWARE � 49

is to ensure that it’s available at the 
appropriate time. Therefore, such 
systems should be built on a deep 
knowledge of the software engineer-
ing profession.

Our results showed that virtual 
software team members consider 
a large and diverse set of informa-
tion to be important as long as it’s 
directly related to their current proj-
ect. That said, receiving updates on 
a project that you’re part of but cur-
rently not working on is still valu-
able, and receiving updates on or-
ganizational information items is 
valuable no matter what relation it 
has to your current project or task.

Requirement 3: Provide Multisource 
Data Combinations
To collaborate effectively, team 
members need to combine informa-
tion from different sources; through 
automation, support environments 
can relieve team members from 
taking on this burden personally. 
As Grady Booch and Alan Brown 
state, automation’s purpose is to 
“create a frictionless surface for 
development by eliminating or au-
tomating many of the daily, non-
creative activities of the individual 
and the team and by providing 
mechanisms that encourage cre-
ative, healthy, and high-bandwidth 
modes of communication among a 
project’s stakeholders.”14

One example of the above is com-
bining data from repositories, task 
boards, and defect systems and pro-
viding all of it in one system. Other 
information such as tweets, calen-
dar items, and ongoing chats can be 
combined as well. Validating such a 
(prototype) system proved valuable 
over the five months we worked with 
one virtual software team—they felt 
the system positively impacted their 
team awareness level. 

Requirement 4:  
Filter Irrelevant Information
To prevent workers from becoming 
overloaded, it’s important to filter 
the data they get. Environments for 
virtual software teams should recog-
nize automatically what information 
is relevant to the current activity. 
They should also contain a function-
ality that automatically recognizes 
when individuals can be interrupted 
to provide this information. 

We investigated the concept of 
how virtual office walls can be used 
to contextualize information based 
on someone’s current activity and 
provided empirical evidence that 
this approach was indeed an effec-
tive method for supporting people 
in performing their tasks. We also 
investigated the prioritization of dif-
ferent types of information and how 
it changes based on current activity. 
We found that some software engi-
neers want to be informed of a wide 
variety of information, but they’re 
primarily interested in direct up-
dates about completed artifacts (re-
quirements, design, and verification 
results) or information about the 
technological solution itself (techni-

cal implementation, selected solu-
tions, and component design). We 
also found that virtual software 
team members generally don’t mind 
being interrupted, but they explic-
itly indicated that they prefer not to 
be disturbed during activities of a 
highly interactive nature (customer 
workshops) or that require a high 

level of concentration (fixing com-
plex problems).

Requirement 5: Represent  
and Recognize Current Contexts  
of Team Members
Support environments must be able 
to recognize a team member’s cur-
rent context so that they can filter 
and provide only the information 
that’s valuable to that person at a 
specific time. Automatically recog-
nizing a team member’s current task 
can be done by assuming that he or 
she is working on the task personally 
selected from the digital task board. 
However, when a team member 
starts to write an email, is that mes-
sage related to the task at hand or to 
something else?

Artificial intelligence is likely 
needed to fully recognize what’s hap-
pening in such a scenario. Intense in-
tegration with other utilities would 
be necessary as well—for example, 
mobile phones (with detection to see 
if a call is task related or not), office 
chairs (is the engineer present?), re-
pository activity (for which project is 
the engineer checking in new code?), 
and so on.

Requirement 6: Support the 
Overhearing of Conversations
We discovered various benefits and 
challenges to overhearing conversa-
tions in virtual software teams—
specifically, the information and use-
ful actions in those conversations. 
One of the most important ben-
efits of overhearing conversations is 

Distance can’t be changed through tools,  
but the perception of it can be  

greatly reduced.

s6sol.indd   49 10/3/14   2:09 PM



50	 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: VIRTUAL TEAMS

OVERVIEW OF UNDERLYING  
EMPIRICAL STUDIES
This article is based on our work on boosting the advantages 
of global software engineering by neutralizing certain 
disadvantages via technological solutions. We performed this 
research iteratively, meaning we first studied one aspect, 
including an empirical evaluation, and then directly applied 
findings and lessons learned. Table A gives an overview 
of all the separate studies, including their relation to the 
requirements in the main text.

We began by investigating the effects of enabling the 
overhearing of conversations in virtual software teams (stud-
ies [S1–S4]). Based on this research, we built a tool called 
Communico and evaluated it in a four-month case study at 
Exact, a Dutch software product company with four locations: 
Malaysia, Belgium, the Netherlands, and the US. We used 
focus groups, semistructured interviews, a questionnaire, and 
transactional log analysis on a sample of 47 participants in-
volved in a project that took place on three of the four sites.

In a different company (IHomer, a small Dutch software 
company), we studied the impact of microblogging with mood 
indicators ([S5]). This research was based on 13 months of 
data from a system that enabled virtual team members to 
share short status updates with their colleagues along with 
an associated mood metric. We performed content analysis of 
all the status updates and performed five follow-up interviews 
to gain more insights.

After this, we turned our research to the challenge of 
supporting collaboration as a whole—examining the general 
setting of collaboration versus single isolated issues. We 
published an article claiming that collaboration should be at 
the core of support environments for virtual software teams 
(K. Dullemond, B. van Gameren, and R. van Solingen, “Col-
laboration Should Become a First-Class Citizen in Support 
Environments for Software Engineers,” Proc. 2012 8th Int’l 
Conf. Collaborative Computing: Networking, Applications and 
Worksharing, 2012, pp. 398–405).

Subsequently, we performed several studies that were 
also conducted at IHomer, where the default daily work loca-
tion for employees was at home; virtual team members met 
face-to-face once a week. First, we started working toward a 
single environment that would provide virtual software teams 
with all the information they would need to collaborate ef-
fectively. We investigated which types of information were 

valuable based on how related the information was and the 
current activity ([S6]). We used a focus group study, followed 
with a survey to collect more information. This survey was 
replicated outside of IHomer for reconfirmation purposes. 

After that, we investigated when software engineers 
needed specific types of information. We first investigated 
how to restrict the information based on the software engi-
neer’s current activity ([S7] and [S8]). Then we performed a 
quasi-experiment using an environment in which participants 
performed simple editing tasks. We divided the 12 partici-
pants into two separate groups of 6; the participants assigned 
to the test group used an environment in which the informa-
tion was contextualized based on their current tasks, while 
the control group used an environment in which that wasn’t 
the case. We measured differences in speed and quality, con-
firming the value of the virtual office wall concept. Afterward, 
we investigated which tasks software engineers were willing 
to have interrupted for certain types of information ([S9]). We 
investigated this with a group of 10 experienced virtual soft-
ware team members from various companies.

Finally, we constructed a single environment with collabo-
ration at its core and automatic filtering that varied depending 
on teams, projects, and tasks. Specifically, filtering depended 
on the current task, team, or project. During code reviews 
(known from the current task on the task board), new check-
in information from the project and team wasn’t shown—in-
stead, team member mood changes from positive to negative 
(or vice versa) appeared. Depending on personal preferences, 
participants could adjust the filtering rules. This environment 
isn’t finished, but we did incorporate the core findings from 
the above studies and evaluated them in a five-month case 
study, collecting data in six interviews ([S10]).

Our studies were empirical but in most cases had only a 
limited sample size or focused on only two industrial contexts. 
As such, we remain modest regarding the generalizability of 
our findings. However, to improve the working environments 
of virtual software teams, researchers must study their real 
environments. We encourage others to perform similar stud-
ies in other companies. Such findings of real-world practice 
will build an empirical body of knowledge to fulfill the needs 
of virtual software teams, now and in the future.

s6sol.indd   50 10/3/14   2:09 PM



	 NOVEMBER/DECEMBER 2014  |  IEEE SOFTWARE � 51

TA
B

L
E

 A Overview of the studies performed in this research.

ID Topic Reference
Requirement in 
the main text

[S1] Analytical study about 
the effects of overhearing 
conversations in virtual software 
teams

K. Dullemond, B. van Gameren, and R. van Solingen, 
“Virtual Open Conversation Spaces: Towards Improved 
Awareness in a GSE Setting,” Proc. 5th IEEE Int’l Conf. 
Global Software Eng., 2010, pp. 247–256.

6

[S2] Empirical study about the 
conceptual value of overhearing 
conversations in virtual software 
teams; validating the concept 
of S1

K. Dullemond, B. van Gameren, and R. van Solingen, “An 
Exploratory Study on Open Conversation Spaces in Global 
Software Engineering,” Proc. 7th Int’l Conf. Collaborative 
Computing: Networking, Applications and Worksharing, 
2011, pp. 307–316.

6

[S3] Analytical study about the 
requirements for and an 
implementation of overhearing 
conversations in virtual software 
teams

K. Dullemond, B. van Gameren, and R. van Solingen, 
“Overhearing Conversations in Global Software 
Engineering: Requirements and an Implementation,” 
Proc. 7th Int’l Conf. Collaborative Computing: Networking, 
Applications and Worksharing, 2011, pp. 1–8.

6

[S4] Empirical study about the 
value of enabling overhearing 
of conversations in virtual 
software teams; validating the 
requirements of S3

K. Dullemond and B. van Gameren, “An Industrial 
Evaluation of Technological Support for Overhearing 
Conversations in Global Software Engineering,” Proc. 7th 
Int’l Conf. Global Software Eng., 2012, pp. 65–74.

6

[S5] Empirical study on the usage 
of a microblogging system 
with mood indicators for virtual 
software teams

K. Dullemond et al., “Fixing the ‘Out of Sight Out of Mind’ 
Problem: One Year of Mood-Based Microblogging in a 
Distributed Software Team,” Proc. 10th Working Conf. 
Mining Software Repositories, 2013, pp. 267–276.

7

[S6] Empirical study about which 
types of information are valuable 
and their relative importance to 
virtual software teams

K. Dullemond and B. van Gameren, “What Distributed 
Software Teams Need to Know and When: An Empirical 
Study,” Proc. 8th Int’l Conf. Global Software Eng., 2013, 
pp. 61–70.

2, 4, 8

[S7] Analytical study about restricting 
information based on the current 
activity in virtual software 
teams	

B. van Gameren, K. Dullemond, and R. van Solingen, 
“Auto-erecting Virtual Office Walls,” Proc. 8th Int’l Conf. 
Collaborative Computing: Networking, Applications and 
Worksharing, 2012, pp. 391–397.

1, 3, 4, 5

[S8] Empirical study to validate 
restricting information based 
on the current activity of virtual 
software teams, as conceptually 
designed in S7	

B. van Gameren, R. van Solingen, and K. Dullemond, 
“Auto-Erecting Virtual Office Walls: A Controlled 
Experiment,” Proc. 8th Int’l Conf. Global Software Eng., 
2013, pp. 206–215.

4, 5

[S9] Empirical study to identify during 
which tasks software engineers 
can be interrupted and with what 
kinds of information

B. van Gameren and R. van Solingen, “When to Interrupt 
Global Software Engineers to Provide Them with 
What Information?,” Proc. 9th Int’l Conf. Collaborative 
Computing: Networking, Applications and Worksharing, 
2013, pp. 495–504.

2, 4, 8

[S10] Empirical study on a single 
environment for two virtual 
software teams (during five 
months of usage) addressing 
derived requirements from our 
previous studies

K. Dullemond and R. van Solingen, “Increasing 
Awareness in Distributed Software Teams: A First 
Evaluation,” Proc. 9th Int’l Conf. Collaborative Computing: 
Networking, Applications and Worksharing, 2013, pp. 
325–334.

3, 7

s6sol.indd   51 10/3/14   2:09 PM



52 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

FOCUS: VIRTUAL TEAMS

having access to your colleagues’ 
technical knowledge. At the same 
time, the greatest challenge is that 
overhearing your colleagues talk can 
be a distraction, and conversational 
context can be unclear. 

The most important information 
about a conversation is its topic, so 
a support environment should help 
identify or track it, even if it changes 
midstream. Furthermore, it should 
be possible to initiate, participate in, 
discover, watch, and � nish conver-
sations, invite others to join them, 
and make conversations private (not 
“overhearable”).

Requirement 7: Support Mood Sharing
Being able to have an idea of your 
teammates’ mood and overall happi-
ness is important to virtual software 
teams. We found evidence for this 
when we investigated the use of a 
system that supports microblogging 
with mood indicators. In particular, 

we found that being able to express 
a small amount of information to-
gether with their associated mood 
made people feel more connected 
with one other on a social level.

This evidence was reaf� rmed 
when we evaluated a system that we 
developed and designed with collab-
oration at its core. In this later evalu-
ation, knowing the happiness of col-
leagues was identi� ed as one of the 
system’s two most valuable aspects.

Requirement 8: Provide for 
Interruption Support
Virtual software team members need 
a variety of information about the 
context in which they’re working to 
collaborate effectively with their col-
leagues. Support environments have 
the potential to regulate that infor-
mation based on both its importance 
and the current degree of “interrupt-
ibility” of team members. To strike 
this balance, support systems must 

consider the noises and distractions 
that software engineers face, even 
when they’re collocated. 

We identi� ed the speci� c activi-
ties during which software engineers 
can be interrupted and which types 
of information are worth that in-
terruption. On one hand, software 
engineers need to know immedi-
ately about completed artifacts and 
changes to the technological solu-
tion itself, but on the other, during 
highly interactive activities or those 
requiring a high level of concentra-
tion, they shouldn’t be interrupted at 
all. Figure 1 combines our � ndings 
into a set of six interruption rules.

C hallenges remain in pro-
viding virtual software 
teams with a support en-

vironment that enables the same or 
higher degree of awareness found in 
a collocated setting. When the sup-
port environment reaches that point, 
distance will no longer be an issue. 
We expect a major step in this direc-
tion when tool suppliers change their 
focus from a coding orientation to a 
collaboration one.

We imagine a future in which 
team members automatically receive 
the information they need when they 
need it and without disrupting them 
in their core activity. When this fu-
ture is attained, the degree of aware-
ness will be lifted far beyond being 
collocated.15 Why would you travel 
to work when the actual degree of 
awareness is better at home?

Acknowledgments
We thank all participants in the presented 
studies, in particular, the distributed soft-
ware engineers at IHomer and Exact. We 
also thank David Redmiles for his help in 
improving an earlier version of this arti-
cle. Finally, we thank the IEEE Computer 

Rule 1. The more related something is to a software engineer’s current project, the greater the 
importance of receiving updates about it. Also, a larger set of information items is important 
when it’s related to the current project.

Rule 2. Software engineers are primarily interested in direct updates about completed 
artifacts, especially if they’re related to the technological solution. Such updates are also 
valuable for a project that a software engineer is part of but not currently working on.

Rule 3. Software engineers are less interested in direct updates concerning the procedures 
and support environments used than about the completed artifacts themselves. The 
importance of such updates is even lower when a software engineer isn’t performing a core 
activity.

Rule 4. Receiving updates on organizational information is valuable no matter how it relates 
to the current project. Updates on project-related information are considered more important 
during work-related travel than during free time or holidays.

Rule 5. Software engineers prefer not to be interrupted when they’re performing activities of a 
highly interactive nature or that require a high degree of concentration.

Rule 6. Even if the information is highly relevant and important, software engineers don’t want 
to be immediately informed of anything when they’re performing an activity during which they 
prefer not to be interrupted. When in doubt, do not disturb!

FIGURE 1. Rules for when to interrupt software engineers.

s6sol.indd   52 10/3/14   2:09 PM



NOVEMBER/DECEMBER 2014  |  IEEE SOFTWARE 53

Society’s reviewers and editors for their 
constructive feedback on earlier ver-
sions, helping us get our article into this 
special issue.

References
 1. E. Carmel and R. Agarwal, “Tactical Ap-

proaches for Alleviating Distance in Global 
Software Development,” IEEE Software, 
vol. 18, no. 2, 2001, pp. 22–29.

 2. G.M. Olson and J.S. Olson, “Distance 
Matters,” Human-Computer Interaction, 
vol. 15, no. 2, 2000, pp. 139–178.

 3. J. Strübing, “Designing the Working 
Process—What Programmers Do beside 
Programming,” User-Centred Require-
ments for Software Engineering Environ-
ments, Springer Berlin Heidelberg, 1994, 
pp. 81–90.

 4. D.E. Perry, N.A. Staudenmayer, and L.G. 
Votta, “People, Organizations, and Process 
Improvement,” IEEE Software, vol. 11, 
no. 4, 1994, pp. 36–45.

 5. N. Ahmadi et al., “A Survey of Social 
Software Engineering,” Proc. 23rd IEEE/
ACM Int’l Conf. Automated Software 
Eng., 2008, pp. 1–12.

 6. F. Lanubile et al., “Collaboration Tools 
for Global Software Engineering,” IEEE 
Software, vol. 27, no. 2, 2010, pp. 52–55. 

 7. J. Portillo-Rodríguez et al., “Tools Used in 
Global Software Engineering: A Systematic 
Mapping Review,” Information and Soft-
ware Technology, vol. 54, no. 7, 2012, pp. 
663–685. 

 8. I. Steinmacher, A.P. Chaves, and M.A. 
Gerosa, “Awareness Support in Global 
Software Development: A Systematic 
Review Based on the 3C Collaboration 
Model,” Collaboration and Technology, 
Springer Berlin Heidelberg, 2010, pp. 
185–201. 

 9. M. Jiménez, M. Piattini, and A. Vizcaíno, 
“Challenges and Improvements in Distrib-
uted Software Development: A Systematic 
Review,” Advances in Software Engineer-
ing, vol. 2009, 2009, article 710971. 

 10. B. Sengupta, S. Chandra, and V. Sinha, “A 
Research Agenda for Distributed Software 
Development,” Proc. 28th Int’l Conf. 
Software Eng., ACM, 2006, pp. 731–740. 

 11. R. Prikladnicki, “Propinquity in Global 
Software Engineering: Examining Per-
ceived Distance in Globally Distributed 
Project Teams,” J. Software: Evolution and 
Process, vol. 24, no. 2, 2012, pp. 119–137. 

 12. P. Dourish and V. Bellotti, “Awareness 
and Coordination in Shared Workspaces,” 
Proc. 1992 ACM Conf. Computer-
Supported Cooperative Work, 1992, pp. 
107–114. 

 13. C. De Souza and D.F. Redmiles, “The 
Awareness Network, to Whom Should I 

Display My Actions? And, Whose Actions 
Should I Monitor?,” IEEE Trans. Software 
Eng., vol. 37, no. 3, 2011, pp. 325–340.

 14. G. Booch and A.W. Brown, “Collaborative 
Development Environments,” Advances in 
Computers, vol. 59, 2003, pp. 1–27.

 15. J. Hollan and S. Stornetta, “Beyond Being 
There,” Proc. SIGCHI Conf. Human 
Factors in Computing Systems, 1992, pp. 
119–125.

Selected CS articles and columns 
are also available for free at 
http://ComputingNow.computer.org.

KEVIN DULLEMOND was a software engineer and re-
searcher at the Delft University of Technology when this work 
was performed. Over the past four years, he studied global 
software engineering teams to understand what they need in 
terms of technological support to collaborate effectively. This 
research can be found in his PhD thesis, “Supporting Collabora-
tion in Global Software Engineering”; www.aspic.nl. Dullemond 
received a PhD in computer science from the Delft University of 
Technology. Contact him at kevin.dullemond@gmail.com.

BEN VAN GAMEREN is a software engineer at IHomer and 
researcher at the Delft University of Technology. Over the past 
four years, his research focused on how to support global 
software engineers with technological support for passively and 
unobtrusively acquiring a suf� cient level of awareness. This 
research can be found in “Auto-Erecting Virtual Of� ce Walls: 
Constructing a Virtual Of� ce for Global Software Engineers”; 
www.aspic.nl. Van Gameren received a PhD in computer sci-
ence from the Delft University of Technology. Contact him at 
benvangameren@gmail.com.

RINI VAN SOLINGEN is a part-time full professor of global 
software engineering at the Delft University of Technology, 
where he heads research and education regarding worldwide 
distributed (virtual) software teams. He’s also CTO of Proware-
ness (www.scrum.nl). Van Solingen is a member of IEEE. Con-
tact him at d.m.vansolingen@tudelft.nl, follow him on Twitter (@
solingen), or read his blog at www.rinivansolingen.com.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

NEXT ISSUE:

January/February 2015

Software 
Engineering 
for Internet 
Computing: 
Internetware 
and Beyond  

s6sol.indd   53 10/3/14   2:09 PM


