
Virtual Open Conversation Spaces:
Towards Improved Awareness in a GSE Setting

Kevin Dullemond
Delft University of Technology

IHomer
K.Dullemond@TUDelft.nl

Ben van Gameren
Delft University of Technology

IHomer
B.J.A.vanGameren@TUDelft.nl

Rini van Solingen
Delft University
of Technology

D.M.vanSolingen@TUDelft.nl

Abstract—Conversations between colleagues in collaborative
software engineering are important for coordinating work,
sharing knowledge and creating knowledge. Overhearing con-
versations of others is useful as well since this: (i) provides
access to the information discussed in the conversations,
(ii) offers the possibility of joining the conversations and
(iii) provides insight in the communication structure of the
project team. When working in a GSE setting, specialized
tooling is required to be able to have conversations and to
know what conversations others are having. In this paper
we discuss how conversations support collaborative software
engineering and how this can be supported by technology in
a GSE environment. To do this, we introduce Communico: a
virtual open conversation space which features: (i) initiating
conversations by selecting people to converse with, (ii) sharing
information regarding the involvement of project members
in these conversations and (iii) having access to persistent
conversations with an explicit status indicating whether they
are ongoing.

I. INTRODUCTION

Global Software Engineering (GSE) is becoming increas-
ingly interesting due to the globalization of business [1],
[2], [3], [4], [5], [6]. In GSE the software development
process is distributed between several geographically dis-
persed locations [7], [3], [8]. Advantages of GSE include:
market-proximity [9], [10], [3], reducing time-to- market by
working around the clock [1], [11], [12], [3], flexibility with
respect to business opportunities [1], [11], reducing costs by
delegating work to countries with low labor cost [13], [3]
and being able to fully utilize available resources [2], [9],
[3]. Besides being beneficial, GSE introduces a number of
challenges in relation to communication, coordination and
control of the development process [13]. Examples are: lack
of informal communication [1], [11], [2], [14] reduced hours
of collaboration [15], [16], [17], [6], communication delay
[14], [18], [4], [7] and loss of cohesion [1], [19], [4].

In collaborative work it is essential to have knowledge
about the context in which you are working to properly
cooperate with others [20], [21]. With information about the
context we mean information about the other members in
the project team, their activities, information about the state
of the project and so on. This information is essential be-
cause this knowledge is necessary for coordinating actions,

managing coupling, discussing tasks, anticipating others’
actions, and finding help [20], [21], [22]. The complexity and
interdependency of software systems (e.g., [23]) suggest that
this is also the case for collaborative software development.
In scientific literature the term ’awareness’ is often used
to denote this [20], [24]. Dourish et al. use the following
definition: ”An understanding of the activities of others
which provides a context for your own activity” [24].

Awareness information is distributed among the members
of the project team as follows: Actors display information
on a shared medium while other actors monitor the medium
and acquire information from it [20]. In this process, both
monitoring and displaying are activities that are not neces-
sarily conducted with the full attention of the actor. Often
when expressing this varying degree of attention dichotomies
are used, such as: explicit versus implicit, deliberate versus
automatic, conscious versus subconscious, focused versus
unfocused and active versus passive. However, as empha-
sized by Schmidt [20], the distinction between these notions
is not categorical but merely one of degrees.

When team members are not sharing a physical work
environment they are outside of sensory range of each other.
Therefore information exchange between them becomes
infeasible without some kind of technological support. This
can be dealt with by providing other ways of acquiring
the required information, like using the telephone or email
to ask a question. However, in general, such solutions are
inferior to the way contextual information is shared in a
traditional co-located setting, in the sense that in comparison
it (i) takes more effort because the communication is more
intentional [25], (ii) is more obtrusive [26], (iii) happens less
frequently [19], [27], [28] and (iv) contains less information
[25], [11], [29]. As such we can conclude that sharing
awareness information is more difficult in a distributed
setting. Due to the nature of the challenges associated with
GSE, it is plausible to assume these challenges originate
from having insufficient access to information regarding the
work context: a lack of awareness. The research presented
in this paper continues upon this insight that a lack of
awareness is the origin of the challenges faced in GSE. It

2010 International Conference on Global Software Engineering

978-0-7695-4122-8/10 $26.00 © 2010 IEEE

DOI 10.1109/ICGSE.2010.36

247

is part of the ASPIC1 research program. The goal of this
program is to develop solutions to the problems caused by
the difficulties with acquiring and maintaining awareness in
GSE. In this research the focus will lie on making the sharing
of information a more passive activity because (i) this will
likely lower the effort to share awareness information, (ii)
cause this information to be more recent and (iii) improve
the quality of the information as well.

In this paper we will focus on how knowledge about
the conversations between the members of a development
team can improve collaboration in GSE. The main research
question will be: ”How can awareness about conversations
within a development team support collaborative software
engineering and how can this be facilitated by technology
in a GSE setting?”

This paper is structured as follows: In section two we
give a formal definition of a conversation within the context
of GSE. In section three we discuss the advantages of
conversations, the advantages of overhearing conversations
and introduce the concept of an open conversation space.
Following this in section four we discuss what existing
supporting technologies support an open conversation space
in a GSE setting. Subsequently in section five Communico,
a virtual open conversation space we developed in this
research, is discussed. This is done by comparing it with
existing tooling, discussing the user interface and briefly
discussing the technical implementation. In section six an
evaluation of the use of Communico in a practical setting
is presented. Finally we discuss limitations and future work
in section seven and conclude upon our research in section
eight.

II. CONVERSATIONS

There are many definitions of the word conversation. The
Oxford English dictionary for example defines it as: ”An
informal spoken exchange of news and ideas between two
or more people” [30]. The Merriam-Webster’s collegiate
dictionary uses the following definition: ”oral exchange
of sentiments, observations, opinions or ideas” [31]. Fi-
nally the Cambridge advanced learner’s dictionary defines
conversation as: ”(a) talk between two or more people in
which thoughts, feelings and ideas are expressed, questions
are asked and answered, or news and information are
exchanged” [32]. These definitions seem to agree on the
fact that, conversations:

1) Use verbal communication
2) Are an exchange of information of various origin be-

tween two or more people
We find the confinement to verbal communication too strict
however. This confinement presumably originated from how
people have held conversations for a very long time, namely

1Awareness-based Support Project for Interpersonal Collaboration in
Software Engineering, http://aspic.ewi.tudelft.nl

by being at the same place at the same time and talking
to each other. We feel, however, that the confinement to
verbal communication is meant to convey something else
altogether. Firstly, an exchange of information between
people is only a conversation when the communication
can be considered synchronous2. Because the communica-
tion should be synchronous for an information exchange
to be a conversation, a form of communication that is
comprehensible by humans in real time should be used.
To help distinguish it from conversations, we propose to
use the term correspondence for the exchange of informa-
tion between people using asynchronous communication3.
Secondly, when people are part of a conversation they
are directing their communication at one or more specific
people. So, broadcasting information, like for instance an
announcer working at a train station, at a football stadium
or at the market place, is not a conversation. This can
however be a way to initiate a conversation. Another way to
initiate a conversation is by directly starting to communicate
with one or more specific people. Summarizing, we define
a conversation in the context of GSE as: ”An exchange
of information between one or more people where those
participating use synchronous communication directed at the
other participants”.

III. OPEN CONVERSATION SPACE

In collaborative work conversations have various uses. For
one, conversations help people to integrate and coordinate
their work, by discussing their past, current and future
activities [34], [22], [35]. An example of this is when a
developer (d1) tells a colleague (d2) he is currently working
on a certain work item and what work item he is planning
to do next. Because developer d1 informs developer d2 of
his current and planned future activities, developer d2 can
both adapt his own current and planned activities as well as
influence those of developer d1. Secondly conversations are
a powerful tool to share knowledge about the actual work
[36], [37]. An example of this is when a project member
asks a colleague to explain some technical aspect of the
work he is doing. Finally, conversations are ways of creating
new knowledge [38], [36], [37]. Examples of this are having
a discussion with someone to come up with a solution to
some issue in the project and having a brainstorm session
to identify the requirements of a system to be built.

Besides taking part in conversations, also conversations of
others are useful. For one, overhearing the conversations of
others is a source of information since this provides access
to the information which is discussed and/or concluded in
the conversation [22]. This refers to both technical project

2Communication is ’synchronous’ when the sending and receipt of
messages between actors communicating can be regarded as instantaneous
[33]

3Note that some tools, for example Gmail, use the term conversation for
what we call correspondence

248

information and information regarding the current, past and
future activities of other project members. Secondly, having
insight in the ongoing conversations provides the opportunity
to join a conversation [39]. Having joined a conversation,
being part of that conversation provides the same uses
as discussed earlier for conversations in general, namely:
integrating collaborative activities, knowledge sharing, and
the creation of new knowledge. Finally, by having access
to the communication frequencies between colleagues, the
insight into the communication structure of the project team
is increased [40], [41], [42]. This information is important
to be able to address communication issues [43], [44], [45].
An example when this information can be useful is the
following: Say you need to ask someone a question but you
cannot reach him. If you know who that person frequently
communicates with, you could attempt to reach this person
instead and see if he can assist you with contacting the right
person or with resolving the issue itself.

Having discussed the uses of conversations in general and
the uses of having access to the conversations of others,
we can conclude both being able to have and overhear
conversations is important in collaborative software engi-
neering. To refer to an environment in which this is possible,
we define an open conversation space: A space in which
(i) conversations are possible between the actors in that
space and (ii) these conversations are visible to other actors
in that space. An example is a normal office setting. In
such a setting members of the project team converse by
means of spoken natural language (among other means)
and such conversations are audible by other people in the
setting. Such an instantiation of an open conversation space
also causes some disadvantages. Examples of these are:
distractions, interruptions and a lack of privacy. However,
working in a space in which the members of the project
team are frequently able to both see and hear each other
is so advantageous that it is one of the main reasons for
working in a co-located setting [42]. Therefore we propose
the creation of a ’virtual’ open conversation space: ”An
open conversation space which is applicable in a distributed
setting”.

IV. EXISTING SUPPORTING TECHNOLOGIES

Arising from the need to communicate when people are
not physically together, technologies were developed which
support telecommunication. The most used example of these
is the telephone [46]. With the widespread adoption of the
internet many more solutions which support remote commu-
nication were developed. Examples are: Instant Messaging,
Internet Relay Chat, E-mail, Forums and more recently
Twitter [47] and Google Wave [48]. Even though these
solutions support remote communication, not all of them
are suitable to have conversations. To support conversations
the tools facilitating the communication should support both
synchronous communication and directing the communi-

cation at specific people. So, Twitter is not suitable to
have a conversation since the communication it supports
is asynchronous, and the communication is mostly directed
at the world in general. For the same reasons forums are
not suitable as well. E-mail, finally is also not suitable
because the communication it supports is also asynchronous.
The other solutions we mentioned above (telephone, Instant
Messaging, IRC and Google Wave) do support directed
synchronous communication and thus having conversations.

Having discussed the requirements of a tool to be able to
support conversations, we turn our attention to tool support
for virtual open conversation spaces. To be classified as a
virtual open conversation space a tool should (i) support
having conversations and (ii) make it possible for people
using the tool to also ’see’ the ongoing conversations they
are not part of. Taking note of these requirements, it is
straightforward to see telephone and Instant Messaging are
not virtual open conversation spaces because, using these
tools, it is impossible to perceive what conversations are
going on, unless you are part of the conversation. Google
Wave also cannot be classified as a virtual open conversation
space because all the participants need to be explicitly
selected by the current participants in the Wave. People who
are not part of the Wave do not know of its existence unless
they are invited4. This leaves Internet Relay Chat since it
fulfills both requirements necessary to be classified as a
virtual open conversation space.

Internet Relay Chat is however not the most suitable
implementation of a virtual open conversation space. For
one, it does not make the concept of a conversation explicit.
All messages are shown in sequential order irrespective of
what conversation they belong to. This limits the creation of
a structured and logical layout for group discussions [49].
In a co-located setting, conversations are also sequential
in nature, but other indicators help to more easily identify
conversations as such. Examples of indicators of conversa-
tions are the placement of individuals in the room (people
standing in close proximity talking are likely to be having
a conversation) and the people at whom people are look-
ing. When only the sequential ordering of conversations is
known, all that is left to identify conversations is semantics.
Because of this it requires more effort to be aware what
conversations are going on. Therefore tooling, supporting
open conversation spaces in a distributed setting, should
provide for easier identification of ongoing conversations.
One method of accomplishing this is making conversations
explicit entities within the virtual open conversation space.
Several existing specialized tools which provide a virtual
open conversation space, do make the conversation explicit.

4By applying a work-around, Google Wave can be made open in a
restricted way. This is done by adding a specific bot to a wave which
makes the respective wave searchable and open to all users of Google
Wave (the entire world). Google Wave might evolve towards a full virtual
open conversation space as it is currently under development.

249

Examples are: GroupBanter [50], Babble [37], Loops [51],
SWIM [49], ReachOut [52] and Threaded chat [53]. All
of these however initiate conversations by creating a topic.
Comparing this to the co-located setting, an example of this
is asking whether anyone knows something about a certain
topic by asking it out loud in a group. Most conversations
are however initiated in a different fashion. In ’real-life’
conversations are mainly started by starting to speak to a
specific person. Birnholtz et al. [54] report doing something
like this with respect to their tool ’OpenMessenger’. We
could however not retrieve how they made conversations
explicit as their work focuses on the gradual initiation of
interactions.

V. COMMUNICO

To validate the theory devised in the research for this
paper we developed a tool called Communico5. Commu-
nico is a virtual open conversation space which utilizes
the communication functionalities provided by the Instant
Messaging program Office Communications Server6. First
we will discuss how it differs from existing tools which
provide an open conversation space in a distributed setting.
Subsequently we will discuss the tool itself by illustrating its
use and we will conclude by briefly discussing the technical
implementation.

A. Difference with existing tooling

Communico differs from the existing tools which provide
open conversation spaces in a number of ways. Firstly,
because it uses an Instant Messaging program for the com-
munication functionalities, it allows for participant based
conversation initiation: conversations can be started by se-
lecting one or more participants and no a priori subject or
topic is required. We feel initiating conversations in this
fashion is quite ’natural’, as it happens frequently in a
co-located setting. Therefore it seems beneficial for a tool
supporting a virtual open conversation space to offer this
kind of functionality.

Secondly, we provide information regarding the involve-
ment of the various actors with respect to the conversations.
A number of sources [53], [55] report the importance of this
although they mostly focus on the importance of knowing
who are currently viewing the ongoing conversations and do
not specify various levels of involvement. Erickson et al. [37]
do consider different levels of involvement in a conversation
and use a visual representation they call a ’social proxy’ to
visualize this in their tool Babble. They depict people as
marbles in and around a circle which represents a certain
conversation. Marbles depicting active people are depicted in
the center of the circle and slowly drift to the border during
inactivity. Activity is defined by how recently someone has

5Communico was chosen as a name since it means ’to share’ in Latin
and the word closely resembles the verb ’to communicate’ in English

6http://www.microsoft.com/communicationsserver/

directly contributed to the conversation or interacted with the
conversation window using the mouse. People logged on to
Babble but active in a different conversation are depicted as
marbles outside of the circle.

In Communico we propose to visualize involvement dif-
ferently. In a co-located setting the degree of involvement
in a conversation of someone depends on how aware he is
of the conversation and whether or not he participates in the
conversation. Therefore we suggest that a tool supporting a
virtual open conversation space should indicate per conver-
sation (i) who is aware of it and (ii) who participates in it.
To do this, we define three levels of involvement and depict
these in figure 1:

Figure 1. Initial model of conversation involvement

Level 0. The actor has no awareness of the conversation and
does not participate.

Level 1. The actor is aware of the conversation and knows
things like: the content, the participants, the run-
ning time and/or the topic.

Level 2. The actor participates in the conversation: the entire
history of the conversation is available and the actor
is able to contribute.

Using the social proxy used in Babble, it is not possible to
categorize the degree of involvement of someone in a con-
versation using these levels. When the marble representing
a specific individual is not shown in the social proxy of
a certain conversation, this does not mean this individual
does not know of its existence: he is either involved in
the conversation on level 0 or level 1. Likewise, when a
marble is depicted in the center of a social proxy circle, it
is impossible to determine whether the person represented
by that marble is actually a participant in the conversation:
it is not clear whether he is involved in the conversation on
level 1 or level 2.

In Communico it is possible to differentiate between the
three levels. When a user is not logged in he does not

250

know of the existence of any conversation and so, for each
conversation, his level of involvement is level 0. When a user
logs in he is not part of any conversation. He can, however,
see the list of conversations and thus be aware of them. So,
his level of involvement in all conversations is of level 1.
Finally, when the user becomes a participant of a certain
conversation, either by being invited or by requesting to
join, his involvement for that specific conversation increases
to level 2. When, in turn, the user leaves the conversation,
his involvement of that conversation drops back to level 1.
To indicate the level of involvement Communico shows: (i)
what people are logged in, (ii) what people are not logged
in (iii) per conversation what users participate in it.

The third way in which Communico differentiates itself
from existing tooling is with respect to persistence. By
making conversations persistent it becomes possible to ac-
cess the knowledge created by having these conversations,
both by the participants of the conversations and by others.
Several tools we looked at [37], [53], [52], [51], [49]
support making conversations persistent, however they do
not differentiate between different states of conversations.
So when everyone leaves a conversation and joins it again
the next day, they can continue the discussion and this is
recognized as being the same conversation. In our view this
is not a correct representation of what actually happened
due to the synchronous nature of a conversation. In reality
a second conversation about a similar subject occurs. To
reflect this in the tooling we do provide persistence but also
assigned them a state to indicate whether the conversation
is still active. Conversations that are active are ongoing and
so open for further contributions. Conversations that are no
longer active are past conversations and no longer open for
contributions.

B. User Interface

Having discussed what differentiates Communico from
existing supporting technologies for virtual open conver-
sation spaces, we continue by illustrating the tool itself.
Communico uses the communication functionalities of Of-
fice Communications Server to allow for communication
between its users and it accesses and displays information
about the conversations that are going on, as well as those
that have ended. The main screen of Communico can be seen
in figure 2. In this view the conversations are displayed and
updated in real time. Of each conversation it is possible to
see the participants currently in the conversation (in green),
the participants that have already left the conversation (in
red), the start time, the initiator and whether the conversation
is ongoing or not. When the mouse is moved over a certain
conversation the last part of the conversation is displayed
in a tooltip box to give an indication of the content of the
conversation. This is shown in figure 3. In this view it is
also possible to apply filters to the conversations that are
displayed to aid the user. In this version of Communico

Figure 2. Conversations view

Figure 3. Conversation tooltip

it is possible to filter to show only conversations with a
particular participant and/or only conversations which are
active. Having chosen a certain conversation, one can chose
to go to the detailed view, depicted in figure 4, either by
double clicking the conversation or by selecting a conversa-
tion and clicking details. In the details window the complete
content of the conversation is shown and updated in real
time. Both from the detailed view and from the conversation
overview described earlier, it is possible to request to join a
conversation by clicking the appropriate button. The effect
of this is that the initiator of the conversation is informed
that you wish to join and he can decide whether or not
to allow this. If he chooses to allow it, you are added to
the conversation automatically. Finally, there is also a view
showing which users are currently logged in to Communico.
This is depicted in figure 5.

C. Technical Implementation

Finally, after the discussion of both the differences with
existing tooling and showing the user interface, we will

251

Figure 4. Conversation details view

Figure 5. Users view

briefly discuss the technical implementation of Communico.
When using Office Communications Server as a commu-
nication platform, a central server routes all communication
and every user of the system runs a client (in this case Office
Communicator 2007 R2) to use the functionality this server
offers. The functionality includes things like IM, audio chat,
video chat and screen sharing. Communico runs alongside
Office Communicator on the machine of every user of
the system. The functionality of Communico is threefold.
Firstly, Communico uses the Office Communicator Automa-
tion API to gather data about users and conversations and
stores this in a central database. When performing these
actions, each instance of Communico cooperates with the
instances of Communico running on the machines of the
others users to determine which instance is responsible for
what data and make sure all data is consistent. Secondly,
Communico shows the data from the central database server
and displays it in its graphical user interface which we
discussed in the previous section. Finally, Communico also
offers the possibility of joining a conversation. To do so,

it writes a join request in the database and the instance
of Communico that owns the conversation will handle the
join request by asking the user of that machine whether or
not to allow this. A global overview of the entire system is
displayed in figure 6.

Figure 6. Overview of the Communico system

VI. EVALUATION

To be able to reflect on the value of Communico in
practice we conducted an informal evaluation to gather first
impressions about its real use. The main purpose of this
was not to validate Communico but to gather feedback from
users and develop ideas for extensions and improvements.
The evaluation was done over a period of two months in
a small Dutch software engineering company, with senior
developers who are used to working in GSE projects. Be-
fore the evaluation the employees of this company already
used Office Communications Server to communicate while
working on projects. During the evaluation they continued
to do so, but five of the employees also used Communico,
so they could benefit from the features it offers.

During the period of use we interviewed the users to
evaluate Communico. In general the users of Communico
found the added functionality beneficial and the overall
consensus was that the tool is useful and the research
direction highly promising. Firstly they enjoyed being able
to see conversations others are having at the moment while
working distributed. They reported that it helped them feel
more connected. Secondly they also liked that they could
actively join these conversations and did not have to wait
passively to be invited. Finally they reported that being
able to search through past conversations was beneficial as
well, since this provided an insight in what conversations
have taken place, as well as give the opportunity to access
conversations which occurred when they were not working
themselves. Besides being beneficial, the users also reported
some limitations of Communico. Firstly, they did not know

252

when new conversations are started in the open conversation
space. This is because they do not have the main screen of
Communico on their display at all times and Communico
does not provide another means of notifying its users that a
new conversation has started. Secondly, they could not see
who were watching a conversation they were having and
they would like to be aware of this, just like they would be
in a co-located setting. Thirdly, knowing what participants
are in a conversation combined with the last sentence of a
conversation is not sufficient to determine if a conversation
is useful for them. Therefore they had to go to the detailed
view of every conversation to determine this, which took
time and effort. Fourthly, the filters that are available to
search through the past conversations are insufficient as the
list of past conversations gets substantial quite fast. Finally,
using Communico all conversations are public and the users
reported they would like to have the possibility to have
private conversations as well.

VII. LIMITATIONS AND FUTURE WORK

In the previous section we discussed some limitations of
Communico that came up in the evaluation. In this section
we will start by discussing possible improvements. Firstly,
people did not know when new conversations were initiated
in Communico. A solution to this is to notify people when
new conversations are initiated. This should however be done
non-obtrusively to minimize the interference with the other
activities of the user. An example would be to notify the user
of the start of a new conversation using a desktop alert: a
small semi-transparent message in the bottom of the screen
which automatically fades out after a short period of time.

Secondly, the users reported they would like to see who
were actually watching the full content of a conversation
they were having. Therefore, for a specific conversation, it
should be visible what users are watching the details and
what users are only viewing general information about the
conversation. In order to accomplish this, we propose to
extend the model depicting the levels of involvement, shown
in figure 1, by defining a third level of awareness of a con-
versation, rated between no awareness and full awareness.
In this third level one is aware of general information about
the conversation. The extended model is shown in figure 7.
When a user sees a conversation in the list of conversations
he has general awareness about it, and thus is involved on
level 1a. When a user goes to the full detailed view of a
conversation he is fully aware about the conversation and
is involved on level 1b. The other levels of involvement
have remained the same. The levels of involvement in the
extended model should be visible in a future version of
Communico.

Thirdly it should be investigated what general informa-
tion about a conversation is required to determine what
conversations are useful to look at in more detail. For
example automatic topic recognition or cloud tagging could

Figure 7. Model of conversation involvement

be investigated. Another seemingly simple solution would
be to research manual tagging. Carrol et al. [56] however
state: ”one of the striking lessons from 20 years of research
on computer-supported collaborative work (CSCW) is that
people will not, and do not want to share explicit intentional
status information”. Therefore an automated solution is
likely to be the best alternative. The solution to the fourth
limitation reported in the evaluation is likely to be related
because it is similar in nature. This limitation concerned that
the filters available to search through the past conversations
are insufficient. Therefore it should be researched how these
could be extended. Examples of possibilities of such an
extension are filtering based on topic or date, or filtering
on multiple participants instead of just one.

The final limitation reported in the evaluation concerned
that all conversations are public in Communico. The users
would like to also be able to have non-public conversations
and this could be implemented by giving participants in
a conversation the possibility of hiding it from the other
people using Communico. In a normal office setting this
is possible as well. In such a setting it is understood that
what is discussed is public information [22]. It is, however,
also possible to have a conversation in private by having the
conversation in a separate office with closed doors. It will be
interesting to see how much this functionality will actually
be used in practice when it is added to Communico.

Following the possible extensions to Communico which
arose from its evaluation in practice, we also think it is
useful to research the addition of topic based conversation
initiation to Communico. Some existing virtual open conver-
sation spaces report the benefits of topic based conversation
initiation and in the co-located setting this functionality is
available as well. Therefore it seems interesting to research
the use of a virtual open conversation space supporting both
participant- and topic-based conversation initiation. Further-
more there has not been a formal evaluation of sufficient size
to draw conclusions regarding the validity of the concepts
Communico is based on. Therefore, after implementation of
the improvements, we will validate Communico in an indus-

253

trial setting. In this validation we will research the extent in
which Communico supports collaborative software develop-
ment teams. We will do this by setting up an industrial case
of sufficient size in which we will both monitor usage and
interview users of Communico. This study will focus on the
identification of the value Communico provides to its users,
and the impact the use of Communico has on the perceived
distance between dislocated team members. Finally, we will
also continue our research in the ASPIC research program:
focusing on increasing awareness in distributed collaborative
software engineering by sharing relevant information about
the work context.

VIII. CONCLUSION

In this paper we have answered the following research
question: ”How can awareness about conversations within a
development team support collaborative software engineer-
ing and how can this be facilitated by technology in a GSE
setting?” We answered the first part of the research question,
by defining the concept of a conversation, discussing the
reasons for having conversations and discussing the advan-
tages of overhearing the conversations of colleagues. These
advantages are the following: (i) it provides access to the
information discussed in the conversations, (ii) it offers the
possibility of joining the conversations and (iii) it provides
insight in the communication structure of the project team.
This led us to conclude that a work environment should
both provide the possibility of having conversations with
colleagues and make the conversations going on in the
work space visible. We called a space which fulfills these
requirements an open conversation space and discussed that
in a GSE environment it is not automatically possible to
have and overhear conversations. Therefore, explicit tooling
is required to create an open conversation space in a GSE
setting: a virtual open conversation space.

We answered the second part of the research question
by: (i) examining the use of existing supporting tools for
dislocated communication in an open conversation space, (ii)
examining existing specialized tools which support transpar-
ent group communication and (iii) reporting on Communico,
a virtual open conversation space we developed, and its eval-
uation in a practical setting. From this research we concluded
that in a virtual open conversation space it is important
to: (i) support participant based conversation initiation, (ii)
make it transparent for the users how involved others are
in conversations they are having and (iii) have access to
persistent conversations with an explicit status indicating
whether they are ongoing.

To summarize, the contributions made in this paper are
the following:

• The identification of the insight that a lack of awareness
is the origin of the challenges faced in GSE.

• Definitions of: conversation, correspondence, open con-
versation space and virtual open conversation space.

• An discussion of the extent in which existing tools
support the concept of a virtual open conversation
space.

• The development of Communico and discussion of its
main characteristics.

• An evaluation of Communico in practice, resulting in
ideas for extensions and improvements.

REFERENCES

[1] E. Carmel, Global software teams: collaborating across bor-
ders and time zones. Upper Saddle River: Prentice Hall PTR,
1999.

[2] J. Herbsleb and D. Moitra, “Guest Editors’ Introduction:
Global Software Development,” IEEE Software, vol. 18, no. 2,
pp. 16–20, 2001.

[3] D. Damian and D. Moitra, “Guest Editors’ Introduction:
Global Software Development: How Far Have We Come?”
IEEE Software, vol. 23, no. 5, pp. 17–19, 2006.

[4] J. Herbsleb, “Global Software Engineering: The Future of
Socio-technical Coordination,” in Proceedings of the IEEE
2007 Workshop on the Future of Software Engineering. IEEE
Computer Society Press, 2007, pp. 188–198.

[5] R. Prikladnicki, J. Audy, D. Damian, and T. de Oliveira,
“Distributed Software Development: Practices and challenges
in different business strategies of offshoring and onshoring,”
in Proceedings of the IEEE 2007 International Conference
on Global Software Engineering. IEEE Computer Society
Press, 2007, pp. 262–274.

[6] B. Fitzgerald, P. Ågerfalk, H. Holmström Olsson, and
E. Conchúir, “Benefits of Global Software Development:
The Known and Unknown,” in Proceedings of the 2008
International Conference on Software Process. Springer,
2008, pp. 1–9.

[7] E. Conchúir, H. Holmström Olsson, P. Ågerfalk, and
B. Fitzgerald, “Exploring the Assumed Benefits of Global
Software Development,” in Proceedings of the IEEE 2006
International Conference on Global Software Engineering.
IEEE Computer Society Press, 2006, pp. 159–168.

[8] R. Sangwan, M. Bass, N. Mullick, D. Paulish, and
J. Kazmeier, Global Software Development Handbook. Auer-
bach Publications, 2007.

[9] R. Grinter, J. Herbsleb, and D. Perry, “The geography of coor-
dination: dealing with distance in R&D work,” in Proceedings
of the ACM SIGGROUP 1999 International Conference on
Supporting Group Work. ACM Press, 1999, pp. 306–315.

[10] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, “Dis-
tance, dependencies, and delay in a global collaboration,”
in Proceedings of the ACM 2000 Conference on Computer
Supported Cooperative Work. ACM Press, 2000, pp. 319–
328.

[11] J. Herbsleb and R. Grinter, “Architectures, coordination, and
distance: Conway’s law and beyond,” IEEE Software, vol. 16,
no. 5, pp. 63–70, 1999.

254

[12] C. Ebert and P. De Neve, “Surviving global software devel-
opment,” IEEE Software, vol. 18, no. 2, pp. 62–69, 2001.

[13] E. Carmel and R. Agarwal, “Tactical approaches for alleviat-
ing distance in global software development,” IEEE Software,
vol. 18, no. 2, pp. 22–29, 2001.

[14] P. Ågerfalk, B. Fitzgerald, H. Holmström Olsson, B. Lings,
B. Lundell, and E. Conchúir, “A Framework for Considering
Opportunities and Threats in Distributed Software Develop-
ment,” in Austrian Computer Society, August 2005, pp. 47–
61.

[15] R. Battin, R. Crocker, J. Kreidler, and K. Subramanian,
“Leveraging resources in global software development,” IEEE
Software, vol. 18, no. 2, pp. 70–77, 2001.

[16] L. Kiel, “Experiences in distributed development: a case
study,” in Proceedings of the 2003 International Workshop
on Global Software Development, 2003, pp. 44–47.

[17] H. Holmström Olsson, E. Conchúir, P. Ågerfalk, and
B. Fitzgerald, “Global Software Development Challenges: A
Case Study on Temporal, Geographical and Socio-Cultural
Distance,” in Proceedings of the IEEE 2006 International
Conference on Global Software Engineering. IEEE Com-
puter Society Press, 2006, pp. 3–11.

[18] J. Herbsleb, D. Paulish, and M. Bass, “Global software
development at siemens: experience from nine projects,” in
Proceedings of the IEEE 2005 International Conference on
Software Engineering. ACM Press, 2005, pp. 524–533.

[19] J. Herbsleb and A. Mockus, “An empirical study of speed and
communication in globally distributed software development,”
IEEE Transactions on Software Engineering, vol. 29, no. 6,
pp. 481–494, 2003.

[20] K. Schmidt, “The Problem with ‘Awareness’: Introductory
Remarks on ‘Awareness in CSCW’,” Computer Supported
Cooperative Work, vol. 11, no. 3-4, pp. 285 – 298, 2002.

[21] A. Syri, “Tailoring cooperation support through mediators,” in
Proceedings of the 1997 European Conference on Computer
Supported Cooperative Work. Kluwer Academic Publishers,
1997, pp. 157–172.

[22] S. Greenberg and C. Gutwin, “A descriptive framework of
workspace awareness for real-time groupware,” Computer
Supported Cooperative Work, vol. 11, no. 3-4, pp. 411–446,
2002.

[23] R. Kraut and L. Streeter, “Coordination in software devel-
opment,” Communications of the ACM, vol. 38, no. 3, pp.
69–81, 1995.

[24] P. Dourish and S. Bly, “Portholes: supporting awareness in
a distributed work group,” in Proceedings of the ACM CHI
1992 Conference on Human Factors in Computing Systems.
ACM Press, 1992, pp. 541–547.

[25] C. Gutwin, R. Penner, and K. Schneider, “Group awareness
in distributed software development,” in Proceedings of the
ACM 2004 Conference on Computer Supported Cooperative
Work. ACM Press, 2004, pp. 72–81.

[26] J. Fogarty, S. Hudson, C. Atkeson, D. Avrahami, J. Forlizzi,
S. Kiesler, J. Lee, and J. Yang, “Predicting human interrupt-
ibility with sensors,” ACM Transactions on Computer-Human
Interaction, vol. 12, no. 1, pp. 119–146, 2005.

[27] T. Allen, Managing the flow of technology. MIT press, 1977.

[28] R. Kraut, J. Galegher, and C. Egido, Intellectual teamwork:
Social and technological foundations of cooperative Work.
Hillsdale: L. Erlbaum Associates Inc., 1990.

[29] J. Olson and S. Teasley, “Groupware in the wild: lessons
learned from a year of virtual collocation,” in Proceedings
of the ACM 1996 Conference on Computer Supported Coop-
erative Work. ACM Press, 1996, pp. 419–427.

[30] C. Soanes, Ed., The Oxford compact English dictionary. New
York: Oxford University Press, 2003.

[31] F. Mish, Ed., Merriam-Webster’s collegiate dictionary.
Springfield: Merriam-Webster Inc., 2003.

[32] K. Woodford, Ed., Cambridge advanced learner’s dictionary.
Cambridge: Cambridge University Press, 2008.

[33] K. Dullemond and B. van Gameren, “Technological support
for distributed agile development,” Master thesis, Delft Uni-
versity of Technology, 2009.

[34] J. Espinosa and E. Carmel, “The impact of time separation
on coordination in global software teams: a conceptual foun-
dation,” Software Process: Improvement and Practice, vol. 8,
no. 4, pp. 249–266, 2003.

[35] Y. Ren and R. Kraut, “A Simulation for Designing Online
Community: Member Motivation, Contribution, and Discus-
sion Moderation.” Manuscript in preparation: Retrieved
from: http://www.cs.cmu.edu/∼kraut on February 24th 2010.

[36] A. Webber, “What’s so new about the new economy?” Har-
vard Business Review, 1993.

[37] T. Erickson, D. Smith, W. Kellogg, M. Laff, J. Richards,
and E. Bradner, “Socially translucent systems: social proxies,
persistent conversation, and the design of babble,” in Pro-
ceedings of the SIGCHI 1999 Conference on Human Factors
in Computing Systems. ACM Press, 1999, pp. 72–79.

[38] E. Wynn, “Office conversation as an information medium,”
Ph.D. thesis, University of California, Berkely, 1979.

[39] S. Greenberg and M. Rounding, “The notification collage:
posting information to public and personal displays,” in Pro-
ceedings of the SIGCHI 2001 Conference on Human Factors
in Computing Systems. ACM Press, 2001, pp. 514–521.

[40] M. Sosa, S. Eppinger, M. Pich, D. McKendrick, and S. Stout,
“Factors that influence technical communication in distributed
product development: an empirical study in the telecom-
munications industry,” IEEE Transactions on Engineering
Management, vol. 49, no. 1, pp. 45–58, 2002.

[41] K. R. McCord, “Managing the integration problem in con-
current engineering,” Master thesis, Massachusetts Institute
of Technology, 1993.

255

[42] R. Kraut, R. Fish, R. Root, and B. Chalfonte, “Informal com-
munication in organizations: Form, function, and technology,”
in Human reactions to technology: Claremont Symposium on
Applied Social Psychology. Sage Publications, 1990, pp.
145–199.

[43] K. Ehrlich, G. Valetto, and M. Helander, “Seeing inside:
Using social network analysis to understand patterns of
collaboration and coordination in global software teams,” in
Proceedings of the IEEE 2007 International Conference on
Global Software Engineering. IEEE Computer Society Press,
2007, pp. 297–298.

[44] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley, “Iden-
tification of coordination requirements: Implications for the
design of collaboration and awareness tools,” in Proceedings
of the 2006 ACM Conference on Computer Supported Coop-
erative Work. ACM Press, 2006, pp. 353–362.

[45] K. Crowston and J. Howison, “The social structure of free and
open source software development,” First Monday, vol. 10,
no. 2, 2005.

[46] A. Huurdeman, The worldwide history of telecommunications.
Wiley-IEEE Press, 2003.

[47] A. Java, X. Song, T. Finin, and B. Tseng, “Why we twitter:
understanding microblogging usage and communities,” in
Proceedings of the 2007 Workshop on Web Mining and Social
Network Analysis. ACM Press, 2007, pp. 56–65.

[48] G. Trapani and A. Pash, “The complete guide to Google
Wave,” 2008, Retrieved from: http://completewaveguide.com
on February 24th 2010.

[49] M. Tran, Y. Yang, and G. Raikundalia, “SWIM: an alternative
interface for MSN messenger,” in Proceedings of the 2007
Australasian Conference on User Interface. Australian
Computer Society, Inc., 2007, pp. 55–62.

[50] K. Inkpen, S. Whittaker, M. Czerwinski, R. Fernandez, and
J. Wallace, “GroupBanter: Supporting Serendipitous Group
Conversations with IM,” in Proceedings of the 2008 Interna-
tional Conference on Collaborative Computing: Networking,
Applications and Worksharing. Springer, 2008, pp. 485–498.

[51] T. Erickson, W. Kellogg, M. Laff, J. Sussman, T. Wolf,
C. Halverson, and D. Edwards, “A persistent chat space for
work groups: the design, evaluation and deployment of loops,”
in Proceedings of the ACM 2006 Conference on Designing
Interactive systems. ACM Press, 2006, pp. 331–340.

[52] A. Ribak, M. Jacovi, and V. Soroka, “Ask before you search:
peer support and community building with ReachOut,” in
Proceedings of the ACM 2002 Conference on Computer
Supported Cooperative Work. ACM Press, 2002, pp. 126–
135.

[53] M. Smith, J. Cadiz, and B. Burkhalter, “Conversation trees
and threaded chats,” in Proceedings of the ACM 2000 Con-
ference on Computer Supported Cooperative Work. ACM
Press, 2000, pp. 97–105.

[54] J. Birnholtz, C. Gutwin, G. Ramos, and M. Watson, “Open-
Messenger: gradual initiation of interaction for distributed
workgroups,” in Proceedings of ACM CHI 2008 Conference
on Human Factors in Computing Systems. ACM Press, 2008,
pp. 1661–1664.

[55] M. Tran, Y. Yang, and G. Raikundalia, “Supporting awareness
in instant messaging: an empirical study and mechanism
design,” in Proceedings of the 2005 Australian Conference
on Computer Human Interaction: Citizens Online: Considera-
tions for Today and the Future. Computer-Human Interaction
Special Interest Group of Australia, 2005, pp. 1–10.

[56] J. Carroll, M. Rosson, U. Farooq, and L. Xiao, “Beyond being
aware,” Information and Organization, vol. 19, no. 3, pp.
162–185, 2009.

256

